

Description

SA8200 can disconnect the systems from its output pin (OUT) in case wrong input operating conditions are detected. The system is positive overvoltage protected up to 36V.

The internal over voltage thresholds (OVLO) is 6.1V and internal over current thresholds (OCP) is 2.5A.

SA8200 also has internal over temperature protect (OTP) function and it can monitor chip temperature to protect the device.

The device is packaged in advanced full-Green Packaging (SOT23-6L).

Features

- Typical Ron: 110mΩ
- VIN Operating Range: 2.5 to 36V
- Internal Overvoltage Lockout: 6.1V
- Internal Overcurrent Lockout: 2.5A
- OVP Response time: < 500ns
- Output Discharge
- Startup Debounce Time: 8ms
- Output Power on time: 8ms
- Internal OTSD Protection
- SOT23-6 Package

Applications

- GPS
- MID
- SLR Digital Cameras
- Industrial Handheld and Enterprise Equipment

SA8200 Package & Simplified Schematic

Device Information

Part No.	Package	Quality	Operation Temp.
SA8200	SOT23-6	3000	-40~85 °C

Pin Descriptions

NAME	SOT23-6	TYPE	DESCRIPTION
GND	1,2,5,6	Р	Power ground
IN	3	Ρ	Input pin, connect to AC adaptor or VBUS. A 1uF low ESR ceramic capacitor or larger must be connected as close as to this pin. It is recommended to use 50V capacitor or according to application.
OUT	4	0	Output pin, Connect to load.

(1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output

Function Block Diagram

Absolute Maximum Ratings (T_A=25°C)

Р	Min.	Max.	Unit	
Input voltage (IN pin)	VIN -0.3		36	V
Output voltage (OUT pin)	VOUT	-0.3	7.0	V
Power dissipation	P _D		0.5	W
Thermal resistance	SOT23-6 θ _{JA}	260		°C/W
ESD(HBM)		2.0		kV
Operation temp.	TJ	-40	150	°C
Storage temp.	T _{stg}	-65	150	°C

Recommended operating conditions (T_A=25°C)

Р	Min.	Max.	Unit	
Input voltage (IN pin)	VIN	3.0	28.0	V
Output voltage (OUT pin)	VOUT	0	5.5	V
Output Contiguous Current	lout	0	1.5*	А

Notes: * Using 25mm² FR4 Signal layer PCB (1 oz) under VM=5.0V test.

Electrical Characteristics (V_{IN} =5V, T_A =25 °C, R_{LOAD} =20)

over operating free-air temperature range (unless otherwise noted)

Parameter		Test Condition	Min.	Тур.	Max.	Unit
DC characteristics and Power-	ON-Reset	÷				
VIN operating voltage	V _{IN}		2.5		36	V
VIN operating supply current	I _{VIN_ON}	V _{IN} =5V		160	250	uA
VIN-to-VOUT ON resistance	R _{ON}	V _{IN} =5V, I _{OUT} =1.0A		110		mΩ
Output discharge resistance	R _{DIS}			500		Ω
VIN undervoltage lockout	V _{UVLO_R}	VIN rising		2.20		V
	V _{UVLO_F}	VIN falling		1.90		V
Output power on time	T _{ON}	VIN = 0 -> 5V to output ON		8		ms
Input Over-Voltage Protectio	n (OVP)	· ·				
VIN OVLO Protection	V_{OVLO_R}		5.8	6.1	6.4	V
Input low level voltage	V _{OVLO_HYS}			150		mV
OVP active time	T _{OVP}	VIN = 5 -> 10V			500	ns
OVP recovery time	T _{ON_OVP}	VIN = 10 -> 5V to output ON		8		ms
Input Over-Current-Protectio	n (OCP)	·				
OCP threshold	I _{OCP}		2.0			А
Over-Temperature-Protection	n (OTP)	·				·
OTP threshold	T _{OTP}			165		°C
OTP threshold hysteresis	T _{OTP_HYS}			40		°C

Functional Description

The OVP switch with overvoltage protection feature a low $120m\Omega$ (typical) on-resistance (RON) internal FET and protect low-voltage systems against voltage faults up to 36VDC. If the input voltage (VIN) exceeds 6.1V, or input current exceeds 2.5A, the internal FET is quickly turned off to prevent damage to the protected downstream components.

The internal FET turns off when the junction temperature exceeds +165°C (TYP.). The device exits thermal shutdown after the junction temperature cools by 40°C (TYP.).

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor1µF or lager must be placed between the VIN and GND pins.

Output Capacitor

A1µF or lager capacitor should be placed between the OUT and GND pins.

SA8200

Over Voltage and Over Current Protector

Package SOT23-6

IMPORTANT NOTICE

Syta Technology Corporation (Sytatek) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

Sytatek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Sytatek product. No circuit patent licenses are implied.