

19W, 单通道, 内置自适应升压, H 类音频功率放大器

特性

• 输出功率

19.0W (3 Ω , 7.4V, THD+N=10%)

16.0W (3 Ω , 7.4V, THD+N=1%)

16.5W (4 Ω , 7.4V, THD+N=10%)

13.7W (4 Ω , 7.4V, THD+N=1%)

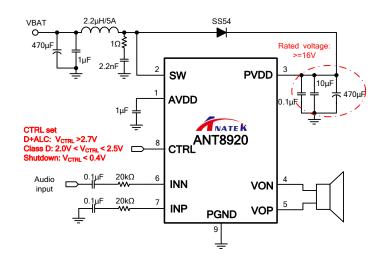
- 工作电压: 5.5V 9.5V
- 内置高效率升压
- 升压供电端 10 级限流可调
- ALC 防破音控制
- 优异的上、下电 pop-click 噪声抑制
- 抖频设计超低 EMI
- 全差分电路结构, 抗干扰能力强
- 内置过热保护,过流保护
- 无铅无卤封装, ESOP8

应用

- 便携式蓝牙音箱
- AI 音箱
- 小拉杆箱

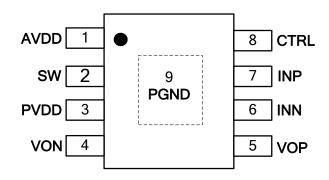
订购信息

产品型号	封装形式	器件标识	包装方式
ANT8920	ESOP8	ANT8920	编带


概述

ANT8920是一款高集成度、内置自适应升压的高信噪比,低底噪,具有ALC(防破音)功能的H类音频功率放大器。升压供电端支持10级限流可调,在功放工作期间,可实时软件调整限流值,防止电池过度放电。在锂电池7.4V供电时,驱动单通道3Ω负载可以输出19W恒定功率。

ALC功能能够自动检测输出失真,动态调整放大器增益,可以避免因为音乐等输入信号幅度过大,或者电池电压波动而引起的输出削顶失真,显著提高音乐品质并且可以提高听感。


此外, ANT8920内置过流保护、过热保护功能, 确保芯片在各种应用环境中的可靠性, 稳定性。

典型应用原理图

引脚定义

ESOP8 (Top View)

引脚功能描述

序号	符号	I/O/P/A	描述	
1	AVDD	Α	内部电路供电脚位,外接 1uF 电容到地	
2	SW	Р	SWITCH 端	
3	PVDD	Р	升压输出以及音频供电管脚	
4	VON	0	音频负相输出端	
5	VOP	0	音频正相输出端	
6	INN	1	音频负相输入端	
7	INP	1	音频正相输入端	
8	CTRL	I	关断控制, ALC 和限流控制脚	
9	PGND	Р	功率地	

极限参数

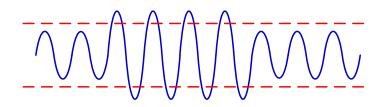
参数		范围		光	说明
		最小值	最大值	单位	<u>√</u> √29
VBAT	电源电压	-0.3	10	V	
CTRL	控制管脚电压		6	V	
T _A	环境工作温度	-40	85	°C	
T _{stg}	储存温度	-40	125	°C	
	耐 ESD 电压(人体模型)	2000		V	НВМ
	焊接温度		260	°C	15 秒内

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

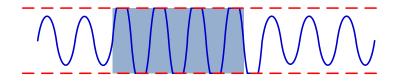
电气特性

限定条件: (VBAT=7.4V, T_A =25°C,Rload=4 Ω ,f=1kHz,除非特别说明)

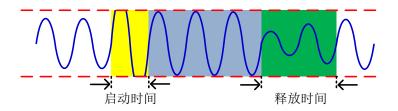
参数	符号	条件		最小值	典型值	最大值	单位
直流参数							
电源电压	VBAT			5.5		9.5	V
AVDD 电压	V _{AVDD}	V _{CTRL} =1			5.2		V
Shutdown 电流	I _{SD}	V _{CTRL} =0			0.1	5	μA
静态电流	IQ	V _{CTRL} =1,	No load		6		mA
输出失调电压	V _{os}	V _{CTRL} =1			5	10	mV
升压振荡器频率	F _{sw}	V _{CTRL} =1			550		kHz
效率	η	P _O =13W	(Boost+Class D)		75		%
交流参数							
		P _O =1W			0.07		
谐波失真加噪声	THD+N	P _O =8W			0.10		%
		P _O =10W	P _O =10W		0.10		
	Po	$R_L=3\Omega$	THD+N=10%		19.0		W
松山小安			THD+N=1%		16.0		
输出功率		D 40	THD+N=10%		16.5		
		$R_L=4\Omega$	THD+N=1%		13.7		
空闲通道输出噪声	V _N	GAIN=20	GAIN=20dB, A-wt		60		μV
信噪比	SNR	GAIN=20	dB, A-wt		93		dB
电源电压抑制比	PSRR	f=1kHz			-72		dB
振荡器频率	Fosc	Class D	Class D		320		kHz
CTRL 控制电平							
Shutdown 电压阈值	V _{SD}			0		0.4	
Class D 电压阈值	V _{ClassD}			2.0		2.5	V
Class D+ALC 电压阈值	V _{ClassD+ALC}			2.7		5.0	
保护							
过热保护阈值	OTP				150		°C
过热保护滞回					20		°C


应用说明

1. CTRL 设置

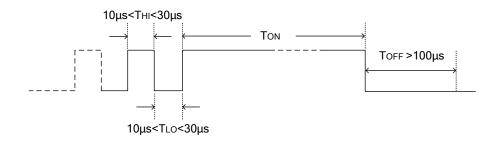

CTRL 管脚是 IC 使能以及模式控制管脚,低电平时芯片关闭,高电平时芯片打开。该管脚内部有下拉电阻(120k Ω),悬空时处于关闭状态。CTRL 管脚同时也是 D 类模式的 ALC 开启和关闭控制管脚,可通过外部电压控制开启和关闭。

2.7V < V _{CTRL} < 5.0V	D 类防破音打开(Class D + ALC ON)
2.0V < V _{CTRL} < 2.5V	D 类防破音关闭(Class D + ALC OFF)
V _{CTRL} < 0.4V	芯片关断

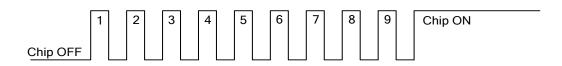

ANT8920 通过 CTRL 引脚设置可进入防破音工作模式。放大器自动检测输出削顶失真,自动调整放大器的增益,达到防失真(防破音)效果。防破音效果示意图如下:

不受电源电压限制时的音频输出信号

普通工作模式下的音频输出信号



ANT8920 的 ALC 防破音功能开启后音频输出信号



ANT8920 可通过 CTRL 管脚进行升压供电端(VBAT)限流设置,支持 10 级限流可调。通过脉冲个数来设定升压供电端(VBAT)电流,限制升压输出功率。如果电池输出电流较小,那么在 CTRL 上电过程中进行功率限制即可,工作至低电时,可以通过继续增加上升沿个数来进一步降低最大功率,以防止电池被拉死。

CTRL 脚限流时序要求如下:

其中 T_{HI} 是脉冲高电平宽度, T_{LO} 是脉冲低电平宽度, T_{ON} 是芯片工作的时间, T_{OFF} 是芯片关断的时间。例如,CTRL 脚九个脉冲限流后芯片工作的时序如下:

CTRL 脚无脉冲(直接高电平时) VBAT 端限流 3.80A, 有脉冲时脉冲个数对应 VBAT 端限流值参考:

0个脉冲	3.80A	5个脉冲	3.23A
1个脉冲	3.66A	6个脉冲	3.14A
2个脉冲	3.55A	7个脉冲	3.01A
3个脉冲	3.45A	8个脉冲	2.90A
4个脉冲	3.34A	9个脉冲	2.80A

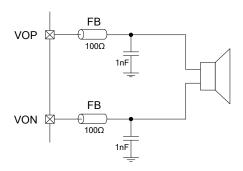
2. 增益设置

ANT8920 输入端采用差分放大结构,可应用差分或者单端输入接法,差分与单端放大倍数一样。ANT8920 内部集成了反馈电阻,可通过修改外置输入电阻调节增益,增益的设置遵循以下公式:

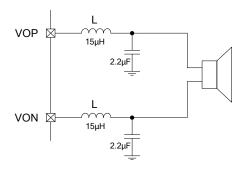
Class D:
$$Av = \frac{330k\Omega}{Rin}$$

其中 Rin 为外置的输入电阻,客户可以根据自身对增益的需要,灵活设置 Rin 的值。

3. 输入电阻 Cin


输入电阻 Rin 和输入电容 Cin 之间构成了一个高通滤波器,其截止频率计算公式如下:

$$f_c = \frac{1}{2\pi RinCin}$$


输入电容值的选择非常重要,一般认为它直接影响着电路的低频特性,但并不是电容值越大越好。无线电话中的喇叭对于低频信号通常不能很好地响应,可以在应用中选取比较大的 f_C 以滤除 217Hz 噪声引入的干扰。电容之间良好的匹配对提升芯片的整体性能和 Pop&Click 的抑制都有帮助,因此要求选取精度为10%或更高精度的电容。

4. 输出滤波器

ANT8920 在 EMI 要求不高的应用时,可以在输出端直接连喇叭或在输出端脚磁珠滤波器,如下图示:

如果 ANT8920 应用于 EMI 要求比较高的系统中,可以在输出端串接 LC 滤波器的方式,如下图示:

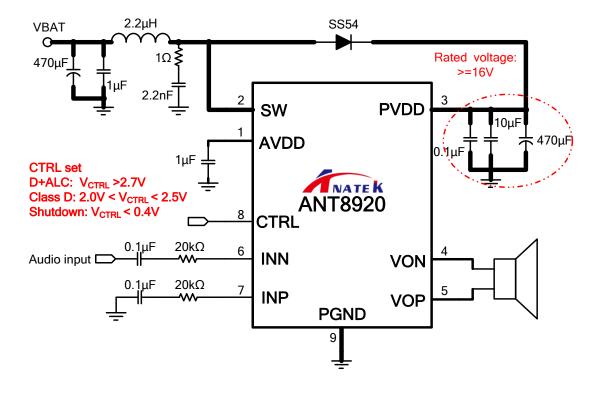
5. 肖特基二极管的选择

ANT8920 的 Boost 部分采用非同步整流架构,需外接肖特基二极管进行续流。肖特基二极管对 IC 的整体性能影响很大,不合适的选型可能导致整机效率偏低,甚至在 IC 的 SW 端产生很大的反向过冲电压,使 IC 烧毁。我们建议 ANT8920 使用能过 5A 电流的肖特基二极管,推荐 SS54。Layout 时要注意肖特基与电感和 PVDD 端的连线尽可能宽尽可能短,不适合的走线会使 SW 端过冲振铃变大,影响 EMI,甚至烧毁 IC。

6. Boost 电感的选择

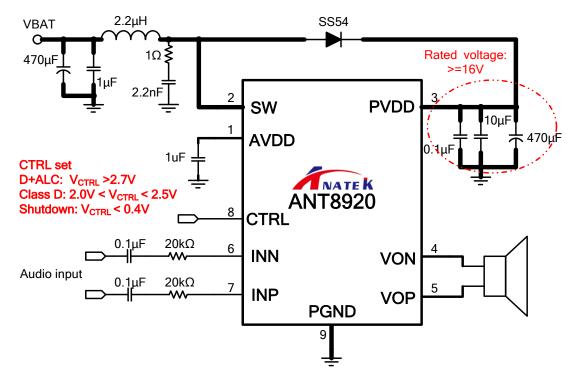
根据纹波稳定性和升压转换效率等考虑,推荐电感使用 2.2μH 且其 DCR 要足够小,饱和电流在 5A 或以上。

7. PVDD 端电容选择


ANT8920 的 PVDD 是升压输出也是内置功放的电源输入。要求使用两组电容:一组是 0.1μF 和 10μF 组成去耦电容;一组 470μF 的电解滤波电容。PVDD 端滤波电容耐压值要求 16V 或以上。0.1μF 电容尽可能靠近 PVDD 脚,10μF 电容尽可能靠近肖特基二极管负端。470μF 电容建议使用高频低阻系列的电解电容,可以有效的提高效率,减少电压纹波。

8. 芯片 PGND

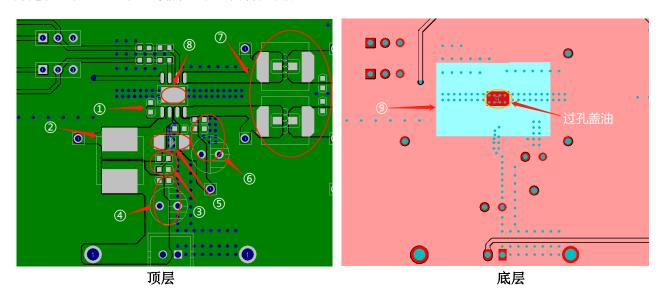
ANT8920 的 PGND 和 ANGD 打线在基板上(芯片底部散热盘上),layout 时一定在要注意芯片底部与PCB上 PGND 的连接。为防止生产漏锡,建议 PCB上 ANT8920 正下方 PGND 过孔孔径不要太大或过于密集防止贴片生产漏锡导致 ANT8920 的 PGND 不连锡或连锡不充分影响芯片性能,甚至烧毁 IC。


9. 典型应用电路

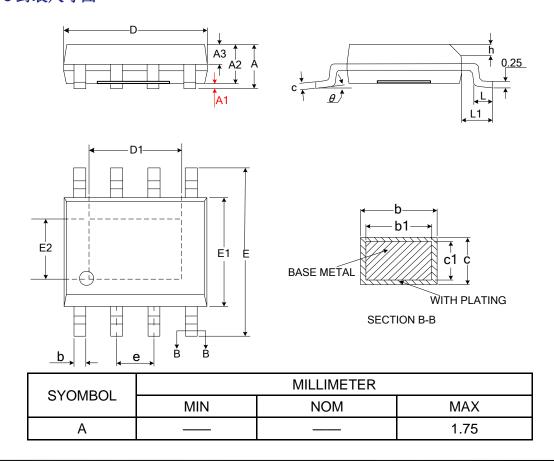
ANT8920 单端输入模式电路图

ANT8920 差分输入模式电路图

注:典型应用电路中黑色粗线是走大电流的, PCB 板上走线要粗(建议 0.8mm 以上),且走线尽量短。


10.Layout 注意事项

- ① 第 1 脚的电容靠近管脚摆放,电容与管脚连线尽量粗(建议 0.6mm 或以上),电容 GND 端与芯片的 GND 端连线要粗且短。
- ② 电感靠近芯片第 2 脚摆放,电感与管脚连线要粗(建议 0.8mm 或以上)。
- ③ 第 2 脚 RC 电路(1Ω+2.2nF)的 GND 端与第 1 脚的电容接地端要隔开,不要直接连一起。
- ④ VBAT 供电的滤波电容紧挨电感,滤波电容与电感连线要粗且短,滤波电容的 GND 端与芯片的 GND 端连线要粗且短。
- ⑤ 肖特基二极管靠近第 2 脚摆放(紧挨电感),肖特基负端与第 3 脚管脚连线要短且粗(建议 0.8mm 或以上)。
- ⑥ 第 3 脚滤波电容靠近管脚摆放,滤波电容与管脚连线尽量粗,滤波电容的 GND 端与芯片的 GND 端连线要粗且短。
- ⑦ 音频输出的 LC(或 RC)滤波电路尽量靠近芯片管脚摆放,且连线要粗(建议 0.8mm 或以上)。
- ⑧ ANT8920 的底部是 GND 管脚。为防止贴片生产漏锡,使得管脚不连锡或连锡不充分而导致芯片上电不工作或损坏,建议 PCB 上芯片正下方过孔不要太大(建议孔径 0.4mm 或以下)也不要太密集,分散打


过孔。

⑨ 底层,芯片正下方露铜散热,露铜部分建议多打过孔。若顶层芯片正下方已打过孔,则底层芯片正下方建议过孔盖油,防止顶层芯片正下方贴片漏锡。

封装尺寸图

ESOP8 封装尺寸图

19W, 内置自适应升压, H 类音频功率放大器

		- ,	¬~~; · >\		
A1	0.05	0.10	0.15		
A2	1.30	1.40	1.50		
А3	0.60	0.65	0.70		
b	0.39		0.48		
b1	0.38	0.41	0.43		
С	0.21		0.26		
c1	0.19	0.20	0.21		
D	4.70	4.90	5.10		
D1	3.30 BSC				
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
E2	2.40 BSC				
е	1.27 BSC				
h	0.25		0.50		
L	0.50		0.80		
L1	1.05BSC				
θ	0		8°		