概要

ANT6801 是一款高效率同步整流 DC-DC 升压芯片,该芯片带有音频信号检测功能,根据信号幅度来自适应调整升压输出值,以达到系统更高的应用效率。为便携式系统提供高效的小尺寸解决方案。具有5V-15V的宽输入电压范围,可为采用双节、三节锂电池的音频系统提供电源解决方案。该芯片具备 10A 的开关电流能力,并且能够提供高达 18V/4A 的持续输出功率。

ANT6801 采用精准的电流模式控制电路,使环路能够在各种状态下都能工作在非常稳定的状态。外围可通过设置 FS_SET 来调节工作频率,避免因特定的开关频率而影响电路板上的其他器件工作。

ANT6801 还可以通过外部的 OC_SET 管 脚来实现可调节的开关限流功能,此功能可以根据系统电源的电流输出能力来设定限流值,从而达到最大的电流输出能力,以防止输入端电流能力不足导致拉死电池造成的系统不稳定现象。

ANT6801 还加入了降低 EMI 的抖频模式,可以根据不同应用来设置是否使用这个模式。

产品专利号: 201621492269.7

特性

- 输入电压范围: 5V-15V
- 10A 开关电流
- 效率最高可达 95%以上
- 二节或三节锂电池串联模式设定
- 二节电池自动升压到最高 15V 动态调整
- 三节电池自动升压到最高 18V 动态调整
- 关断期间,漏电流为 1uA 以下
- 低电池电压自动降低输入端限流值
- 可调开关频率
- 可调输入端限流值
- Cycle-by-cycle 过流保护检测
- 过温保护
- eTSSOP24 封装

应用

- 多媒体音箱
- 蓝牙音箱

封装信息

• eTSSOP24

订购信息

产品型号	封装形式	器件标识	包装方式
ANT6801	eTSSOP24	ANT6801	编带

典型应用电路

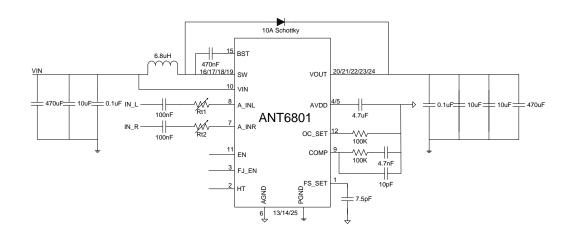


图 1 典型应用电路图

1 极限参数

表1 芯片最大物理极限值

参数	范围		单位	2H PP	
参 数	最小值	最大值	平位	说明	
VIN,SW,BST,VOUT	-0.3	20	V		
EN		7	V		
A_INL,A_INR,FJ_EN,HT,AVDD,		5	V		
OC_SET,COMP,FS_SET		3	v		
环境工作温度	-40	85	$^{\circ}$		
工作结温	-40	150	$^{\circ}$		
储存温度	-40	125	$^{\circ}$		
耐 ESD 电压(人体模型)	2000		V	HBM	
$\theta_{ m JA}$	35	°C/W			
焊接温度		260	°C	15 秒内	

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

2 电气特性

限定条件: (VIN=7.4V, TA=25℃)

表2 AN6801 电气特性

参数	符号	条件	最小值	典型值	最大值	单位
直流参数						
电源电压	VIN		5		15	V
Power down 电流	I_{SD}	EN=0		1	10	uA
静态工作电流	I_{DD}	EN=1, I _{LOAD} =0		20	25	mA
振荡器频率	Fosc	C _{FSSET} =7.5pF	300	330	360	KHz
效率	η	V_{IN} =7.4V, V_{OUT} =15V I_{LOAD} =3A		93		%
		V_{IN} =12V, V_{OUT} =18V I_{LOAD} =4A		95		
松)辿四次は	I_{LIM}	$R_{OC_SET}=100k\Omega$		6		A
输入端限流值		$R_{OC_SET}=510k\Omega$		10		A
欠压锁定阈值	V_{UVLO}				2.8	V
欠压锁定迟滞	$V_{\text{UVLO,HYS}}$			0.5		V
PD 逻辑电平						
逻辑高电平	V_{ENH}		1.8			V
逻辑低电平	V _{ENL}				0.4	V
保护						
过温保护阈值	T_{SD}			150		$^{\circ}\!\mathbb{C}$
过温迟滞	T _{HYS}			20		$^{\circ}\!\mathbb{C}$

3 引脚定义及功能描述

引脚分配图

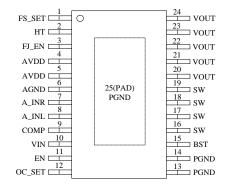


图 2 eTSSOP24 引脚分配图

引脚功能描述

表3 ANT6801 引脚描述

序号	符号	描述
1	FS_SET	通过外接电容到地设定工作频率,悬空时为默认最高频率。
2	НТ	电池数量选择脚。悬空或接地为二节电池应用,接高为三节电池 应用。
3	FJ_EN	抖频使能脚。悬空或接地抖频功能有效,接高抖频功能无效。
4/5	AVDD	内部供电电源,外接 4.7uF 电容滤波。
6	AGND	模拟地。
7	A_INR	音频信号采样输入端。
8	A_INL	音频信号采样输入端。
9	COMP	环路补偿脚。
10	VIN	电源输入脚。
11	EN	芯片使能脚,高电平有效。
12	OC_SET	输入端限流值设定脚,对地加电阻来决定限流值。
13/14/25	PGND	功率地。
15	BST	驱动电源自举脚。
16-19	SW	开关脚。
20-24	VOUT	输出脚。

4 应用说明

ANT6801 是一款高度集成的升压 DC-DC 芯片,根据检测到的音频信号来自适应调整升压输出电压值,提高整个电源系统的工作效率。ANT6801 只需要很少的外围器件,就能够实现变频、限流、音频检测等功能。

ANT6801 的升压解决方案如下:

HT管脚悬空或接地时,ANT6801是二节电池工作模式。

二节电池 7.4V 时,最高升压到 15V,根据音频信号的幅度在 9V~15V 范围内自适应调整输出电压值。音频输入管脚接地时关闭自适应升压功能,固定升到 15V。

HT管脚接高电位时,ANT6801是三节电池工作模式。

三节电池 11.1V 或 12V 电源时,最高升压到 18V,根据音频信号的幅度在 14V~18V 范围内自适应调整输出电压值。音频输入管脚接地时关闭自适应升压功能,固定升到 18V。

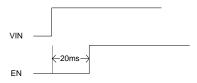
自适应升压设定方法:

通过外置电阻 Rt1 和 Rt2 来分别设定左右通道,把 ANT6801 的识别倍数同音频功放的增益倍数设定一致。

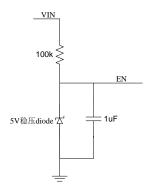
(1) 功放为单端输入设定方法:

假设音频放大倍数为 N,
$$R$$
t1 = R t2 = $\frac{7200-100N}{N}$ ($K\Omega$),

假如为单通道,那么只需设定 Rt1 或者 Rt2 任意一段即可,另一端悬空。


(2) 功放为差分输入设定方法:

差分输入,只需要检测差分的一侧信号即可。


假设音频放大倍数为 N,
$$R$$
t1 = R t2 = $\frac{3600 - 50N}{N}$ ($K\Omega$),

假如为单通道,那么只需设定 Rt1 或者 Rt2 任意一段即可,另一端悬空。

上电时序要求, VIN 先上电, 等待 VIN 稳定至少 20ms 之后, 才让 EN 管脚上电, 如下图所示。

如果系统没有主控控制,可以通过外围来做延时,如下图电路所示:

5 封装尺寸图

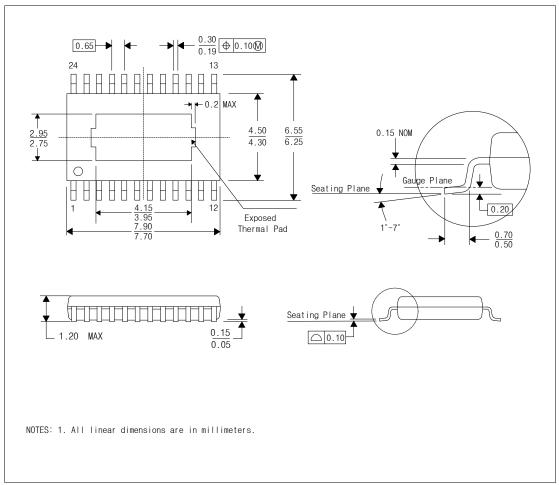


图 3 封装尺寸图