
ANT2801 用户手册 V1.4

深圳市安耐科电子技术有限公司 2017年8月

版本	日期	修改日志
V1.4	2017/8/2	1. Page1 图 1 典型应用电路图外围元件参数调整。
		2. Page2 图 2 典型应用电路图外围元件参数调整。

概要

ANT2801 是一款宽范围电压输入,专门为双节锂电池充电的芯片,无需传统的 9V 专用适配器,只需标准 5V 适配器。可以通过外置电阻来设定芯片充电电流,通过外置电容来设定充电超时时间。低阻抗的电源通路可以使充电效率更高,减少充电时间,提高电池使用寿命

ANT2801 可以自适应适配器的电流供应能力来自动调整充电电流,既能确保输入适配器不会出现过载现象,又能发挥适配器的最大电流能力,所以适用于各种直流设备以及标准 USB 充电设备。

应用

- 蓝牙音箱
- 移动电源
- 其他电子设备

典型应用电路

特性

- 充电电流可以达到 1.2A
- 包括涓流、恒流、恒压三种充电模式。
- 充电恒流值设定。
- 充电定时设定。
- 输入功率保护设定。
- 电池温度阈值设定。
- 内部集成高压低导通电阻功率管。
- 充电状态指示。
- 欠压锁定。
- 过压保护。
- 过温保护。

封装信息

• eTSSOP20

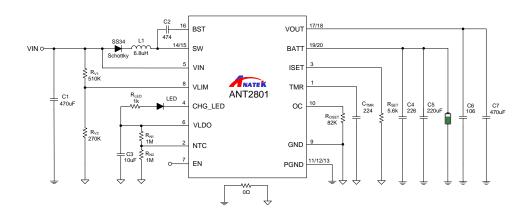


图 1 ANT 2801 典型应用电路 (5V1A 适配器)

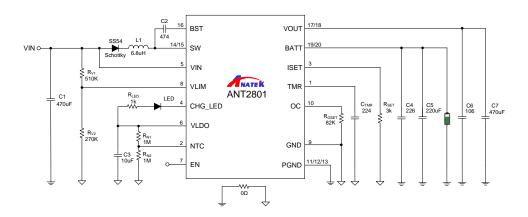


图 2 ANT2801 典型应用电路(5V2A 适配器)

注: 5V2A应用和5V1A应用,只需改变Rset 电阻值。如果选择5V1A的应用,则使用5V2A的适配器时,不能增加实际充电电流。如果使用5V2A的应用,则使用5V1A适配器或其他更小电流能力的充电设备时,ANT2801会以充电设备的最大电流能力进行充电,而不会"拉死"USB充电设备。

1 极限参数

参数	范围		单位	2삼 ㅁㅁ	
多数 	最小值	最大值	平位	说明	
电源电压	-0.3	14	V		
储存温度	-65	150	$^{\circ}$		
输入电压	-0.3	V_{DD}	V		
耐 ESD 电压	2000		V	HBM	
结温		150	$^{\circ}$		
极限工作温度	-40	85	$^{\circ}$		
热阻					
$\theta_{JC}(SOP)$		35	°C/W		
$\theta_{JA}(SOP)$		140	°C/W		
焊接温度		260	°C	15 秒内	

表1 芯片最大物理极限值

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

2 电气特性

限定条件: (VIN=5.0V, TA=25℃)

表2 ANT2801 电气特性

参数	符号	条件	最小值	典型值	最大值	单位
输入参数						
输入电压	V_{IN}		3		6	V
欠压锁定阈值	UVLO	上升		3		V
入压坝足関恒	UVLO	下降		2.8		V
振荡器频率	Fosc		0.85	1	1.15	MHz
输入限流	I_{SW}	OC 管脚悬空		4.2		A
High side 导通电阻	R _{H(ON)}			100		mΩ
Low side 导通电阻	R _{L(ON)}			100		mΩ
关断漏电流	I_{SD}				5	μA
V _{OUT} 参数						
		$@V_{BATT} \leq 6.8V$	7	7.1	7.2	V
V _{OUT} 电压范围	V _{OUT}	$6.8 \le V_{BATT} \le 8.4$		V _{BATT} +0.3V		V
电池充电参数						
充电终止电压	V_{BATT}	$V_{BATT}>V_{RECH}$ $I_{CHG}\leqslant I_{BF}$	8.27	8.40	8.53	V
重新充电阈值	V _{RECH}		8.09	8.21	8.33	V
涓流充电阈值			5.9	6	6.1	V
涓流充电电流				10%		I_{CC}
充电终止电流	I_{BF}		5%	10%	15%	I_{CC}
电池反向电流	I _{BATT}				1	uA
I _{SET} 参考电压				1.24		V
VLDO 供电						
┃ - 欠压锁定阈值		上升		2.9		V
		下降		2.3		V
VLDO 输出电压				4.6		V
逻辑						
EN 输入低电压			1.5			V
EN 输入高电压					0.4	V
保护						
过温保护				150		$^{\circ}$

3 引脚定义及功能描述

引脚分配图



图 3 eTSSOP20 引脚分配图

引脚功能描述

表3 ANT2801 引脚描述

序号	符号	描述	
1	TMR	设定定时时间,当 TMR 引脚接地时,取消定时功能。	
2	NTC	热敏电阻输入端,连接一个普通电阻到 VLDO,另一个热敏电阻到地,这个热敏电阻要靠近电池端,来检测电池温度。	
3	ISET	充电电流设定引脚,通过对地电阻来设定恒流充电电流,悬空此引脚,则不充电。	
4	CHG_LED	充电状态指示,通过对 VLDO 的发光二极管来指示充电状态,充电过程中灯亮,充满后灯灭。	
5	VIN	电源输入引脚	
6	VLDO	IC 内部供电输出引脚。	
7	EN	使能引脚, 高有效。	
8	VLIM	输入电压钳位设定。	
9	GND	模拟地。	
10	OC	输入电流的过流保护设置引脚,通过对地电阻来设置输入过流保护 阈值。	
11,12,13	PGND	功率地。	
14,15	SW	开关脚位。	
16	BST	SW 和 BST 之间连一个 470nF 电容,来给内部电路提供驱动能力。	
17,18	VOUT	升压输出引脚。	
19,20	BATT	电池正端连接引脚。	

4 ANT2801 应用说明

芯片描述

ANT2801 是一个 3V-6V 输入,可以为双节锂电池提供 1.2A 充电电流的充电芯片,内部充电频率可以达到 1MHz,充电电流可以通过外置 ISET 脚位对地电阻来设定。同时具有过压关断,过温关断,以及输入功率保护的功能。此外,充电定时功能可以保护电池在意外情况下烧毁。

充电状态描述

ANT2801 是通过升压电源来对电池进行恒流充电的芯片,无论电池是否连接,都可以正常工作。而且无需外部补偿来实现芯片的稳定。在上电过程中,首先, V_{IN} 对 V_{OUT} 充电,当达到 V_{IN} 时,SW 开始震荡工作,实现升压功能,当 V_{OUT} 建立好之后,才开始检测 V_{BATT} 状态。

- 1) V_{BATT}<6V,涓流充电阶段开始进行。
- 2) 6≤V_{BATT}≤8.4V, 恒流充电阶段开始进行。

在充电过程中,CHG_LED pin 到 VLDO 之间的 LED 会保持常亮状态,充电结束后,LED 会熄灭。充电超时,LED 会出现固定频率的闪烁状态,充电超时是指由于充电故障导致长时间不能充电,达到设定的时间后,LED 闪烁报警。

充电电压描述

- 1)如果 $V_{BATT} > 6.8V$, V_{OUT} 会比 V_{BATT} 高出 300 mV,设定这个目的是为了最大的减小快速充电期间充电管的功耗,提高充电效率。
- 2) 如果 V_{BATT} < 6.8V, V_{OUT} 则会固定在 7.1V,为电池提供充电驱动能力。

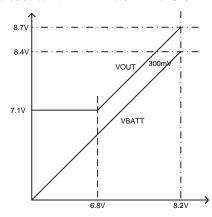


图 4 V_{OUT} VS. V_{BATT}

自动重新充电

一个充电周期结束后,ANT2801 会关闭充电显示状态,在此期间,电池可能会因为自然放电出现电量下降,为了保证电池不会因为在连接适配器时,电量自动耗尽,当电池电压下降到自动充电阈值(典型值8.23V)时,新的充电周期就会自动开始。

输入电压钳位设定

输入电压钳位,是在适配器电流输出能力不满足芯片设定的电流情况下,对输入源进行的一种保护动作,通过 VIN 到 VLIM 到 GND 之间的分压电阻来设定一个输入的钳位阈值,这个值可以保证输入源以最大驱动能力来为负载提供电流,同时确保输入电压不会低于所设定的阈值,从而保护输入源不会被"拉死",此时的充电电流大小会自适应输入电流的能力。输入电压钳位点可以通过 VIN 到 VLIM,VLIM 到 GND 之间的电阻来进行设定,按照以下方程式进行设定即可:

$$V_{IN_LIM} = 1.52 \times \frac{R_{V1} + R_{V2}}{R_{V2}}(V)$$

典型应用电路中所设定的 VLIM 阈值为 4.75V。

充电电流设定

ANT2801 的充电电流可以用 ISET 对地的电阻 R_{SET} 来进行设置。充电电流按照以下方程式来设定:

$$I_{CHG} = 1.24 \times \frac{2400}{R_{SET}(K\Omega)} (mA)$$

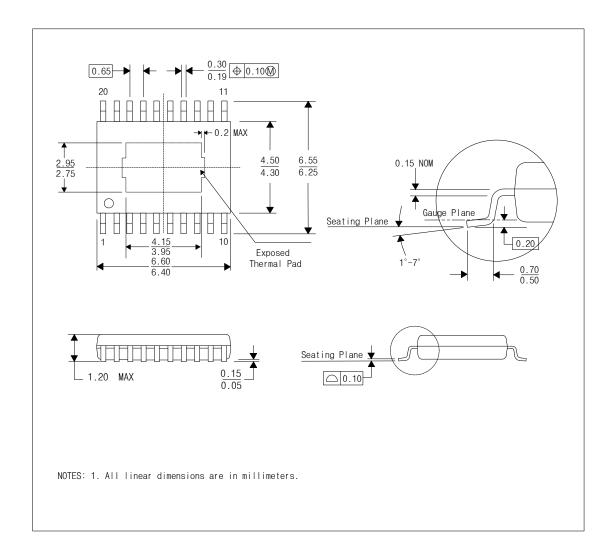
充电定时设定

充电定时是指在充电发生故障时,而设定的定时时间,当芯片检测到充电故障,达到所设定的时间后,芯片自动报警。ANT2801 是使用内部的时钟来进行定时设定,这个时间可以通过 TMR 管脚对地的电容 C_{TMR} 以及充电电流 I_{CHG} 来进行设置。充电定时时间必须大于正常需要的充电进行时间。

恒流充电模式充电定时时间设定:

$$t_{Total_TMR} = \frac{85 \times C_{TMR}(uF)}{I_{CHG}(A)}(hr)$$

在定时完成之后,LED 灯会以一个低频信号闪烁报警,其频率由 TMR 对地电容 C_{TMR} 决定:


$$T_{flash} = 3 \times C_{TMR}(uF)(s)$$

输入限流设定

ANT2801 可以通过 OC 管脚对地的电阻 Roset 来限制 VIN 的输入电流,进行限流保护,OC 和 VLIM 同时对输入进行保护。下表是不同应用条件下,推荐的 Roset 阻值。

输入限流值	R_{OSET}
1A	13K
2A	36K
3A	91 K

5 封装尺寸图

