

2×40W, 无滤波器, 超低静态电流, D 类音频功率放大器

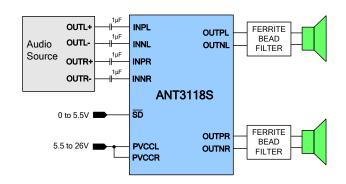
特性

- 输出功率
 BTL: 2×40W (8Ω, 24V, THD+N=10%)
- PBTL: 80W (4Ω, 24V, THD+N=10%)
 PVCCL/R 支持宽电压供电,范围 5.5V 26V
- 20mA@24V 静态电流
- 效率高达 93%
- 优异的上、下电 pop-click 噪声抑制
- 抖频设计超低 EMI
- 内置过热保护,短路保护,过压保护,欠压 保护功能
- 无铅无卤封装,ESOP16

应用

- 大功率蓝牙音箱
- AI 音箱
- 2.1 声道音箱
- LCD 电视

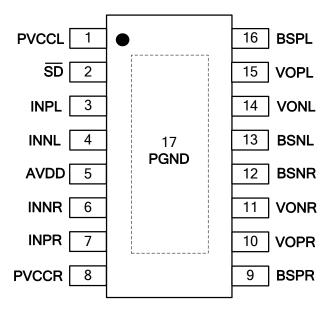
订购信息


产品型号	封装形式	器件标识	包装方式
ANT3118S	ESOP16	ANT3118S	编带

概述

ANT3118S 是一款高集成度、高效率的双通道 D 类音频功率放大器。支持 BTL 和 PBTL 模式输出,供电电压范围 5.5V-26V。双通道 BTL 模式下输出功率可以到 2×40W(8Ω, 24V, THD+N=10%),单通道 PBTL 模式下可以输出 80W(4Ω, 24V, THD+N=10%)。ANT3118S 采用新型 PWM 脉宽调制架构,降低静态功耗,提高效率, PWM 采用扩频技术,大幅降低了 EMI 辐射,在功率和喇叭线长一定的范围内,可以用磁珠替代电感方案,从而优化成本和电路面积。

ANT3118S内置过热保护,短路保护,过压保护, 欠压保护,防止芯片在非正常工作条件下损坏。


简易应用框图

ANT3118S 应用框图

引脚定义

ESOP16 (Top View)

引脚功能描述

序号	符号	I/O/P/A	描述
1	PVCCL	Р	左通道功率电源
2	SD	I	芯片关断管脚,低电平有效
3	INPL	I	左通道音频正端输入
4	INNL	I	左通道音频负端输入
5	AVDD	0	内置 5.2V LDO 输出
6	INNR	I	右通道音频负端输入
7	INPR	I	右通道音频正端输入
8	PVCCR	Р	右通道功率电源
9	BSPR	Р	右通道正端自举
10	VOPR	0	右通道正端输出
11	VONR	0	右通道负端输出
12	BSNR	Р	右通道负端自举
13	BSNL	Р	左通道负端自举
14	VONL	0	左通道负端输出
15	VOPL	0	左通道正端输出
16	BSPL	Р	左通道正端自举
17	PGND	Р	功率地

极限参数

参数		范围		単位	说明	
		最小值	最大值	半世	近 朔	
电源电压	PVCC	-0.3	30	٧		
输入电压	SD	-0.3	6.0	٧		
环境工作温度	T _A	-40	85	°C		
储存温度 T _{stg}		-40	125	$^{\circ}\mathrm{C}$		
耐 ESD 电压(人体模型)		2000		>	НВМ	
焊接温度			260	°C	15 秒内	

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

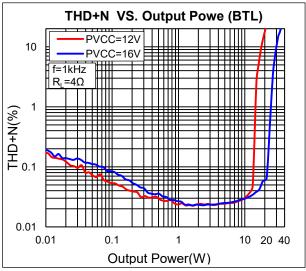
推荐应用参数

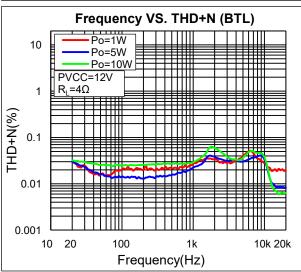
4	范围		光	说明		
参数		最小值	最大值	单位	VT-93	
电源电压	PVCC	5.5	26	V		
输入电压	SD	0	5.5	V		
R _{SPK_MIN} 最小负 载阻抗	DT # 1	4		Ω	5.5V ≤ PVCC ≤ 16V	
	BTL 模式	8	Ω	5.5V ≤ PVCC ≤ 26V		
	PBTL 模式	2		Ω	5.5V ≤ PVCC ≤ 12V	
		4		Ω	5.5V ≤ PVCC ≤ 26V	

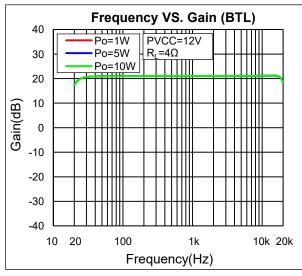
电气特性

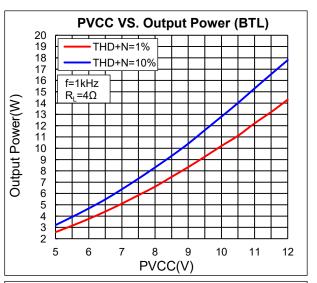
限定条件: (PVCC=12V to 24V, T_A =25°C, R_L =8 Ω ,f=1kHz,除非特别说明)

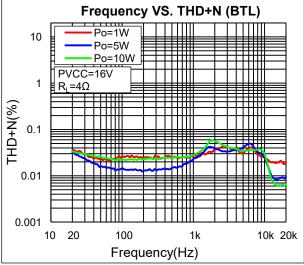
参数	符号	条件		最小值	典型值	最大值	单位
直流参数							
PVCC 电源电压	PVCC			5.5		26	V
PVCC Power down 电流	I _{SD}	V _{SD} =0			0.1	5	μΑ
		V _{SD} =1 PVCC=24V PVCC=16V PVCC=16V	PVCC=24V		20		mA
PVCC 静态工作电流	I_Q		16		mA		
			PVCC=12V		12		mA
漏源导通电阻	R _{DS(on)}	PVCC=12V, I _O =500mA			110		mΩ
增益	Gain			25	26	27	dB

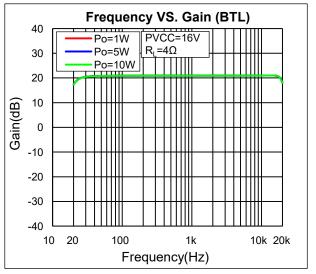


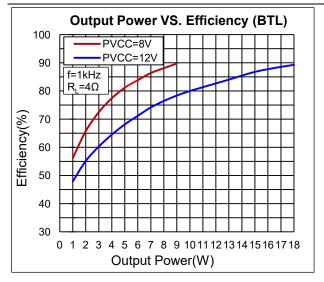

限定条件: (PVCC=12V to 24V, T_A=25℃, R_L=8Ω, f=1kHz, 除非特别说明)

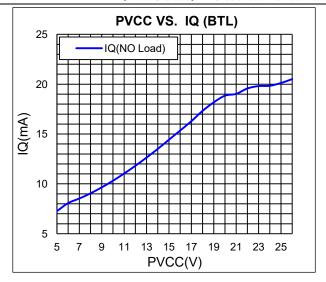

参数	符号	条件	最小值	典型值	最大值	单位
AVDD 输出电压	VLDO	Vs□=1		5.2		V
输出失调电压	V _{OS}	V _{SD} =1		1.5	10	mV
振荡器频率	Fosc	V _{SD} =1	270	330	390	kHz
效率	η	P _{OUT} =8W,12V,8Ω		93		%
SD高电平	$V_{\overline{\mathtt{SD}}\mathtt{L}H}$	PVCC=5.5V to 26V	2		5.5	V
SD低电平	$V_{\overline{\mathtt{SD}}}_{L}$	PVCC=5.5V to 26V	0		0.4	V
交流参数						
		PVCC=24V,8Ω@		00		10/
		1kHz,THD=1%		33		W
		PVCC=24V,8Ω@		40		10/
*** *** *** *** *** *** *** *** *** **	_	1kHz,THD=10%		40		W
输出功率(BTL 模式)	$P_{O(BTL)}$	PVCC=16V,4Ω@		0.5		
		1kHz,THD=1%		25		W
		PVCC=16V,4Ω@		20		W
		1kHz,THD=10%		30		
	TUD . N	PVCC=12V,Po=8W,@		0.4		0/
谐波失真加噪声	THD+N	1kHz		0.1		%
空闲通道输出噪声	V _N	PVCC=12V, GAIN=20dB		110		μV
信噪比	SNR	A 加权,GAIN=20dB		100		dB
电源电压抑制比	PSRR	f=1kHz		72		dB
通道隔离度				100		dB
		PVCC=24V,4Ω@		C.F.		10/
		1kHz,THD=1%		65		W
		PVCC=24V,4Ω@				1
松山马家 (PDTI 拱子)	D	1kHz,THD=10%		80		W
输出功率(PBTL 模式)	P _O (PBTL)	PVCC=12V,4Ω@		47		10/
		1kHz,THD=1%		17		W
		PVCC=12V,4Ω@		00		14/
	<u> </u>	1kHz,THD=10%		20		W
保护						
过热保护阈值	OTP			160		°C
过热保护滞回				20		°C

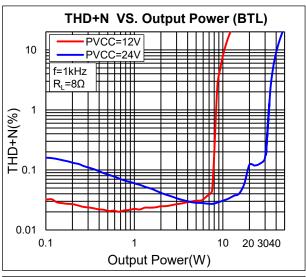


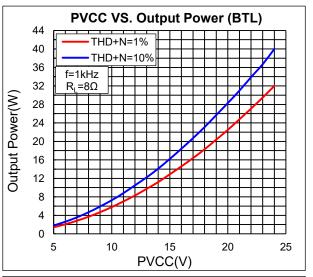

典型特性曲线

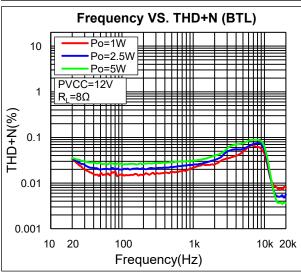


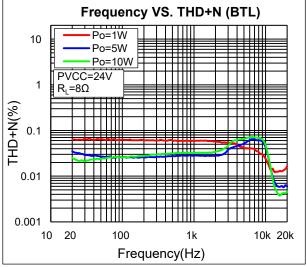


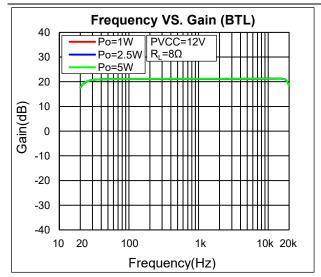


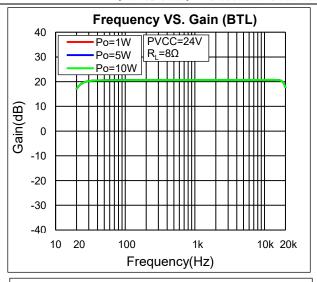


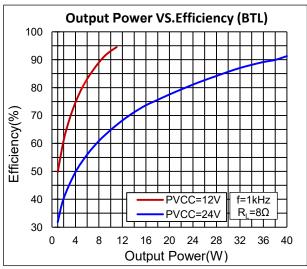


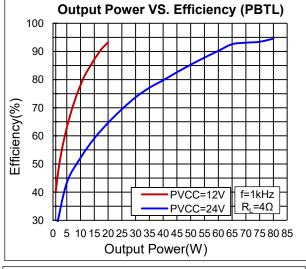


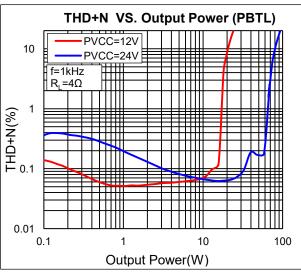


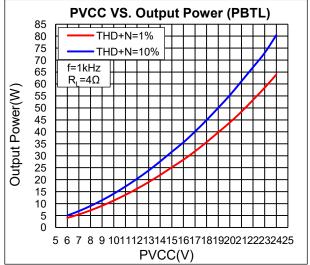


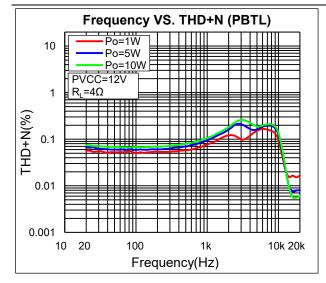


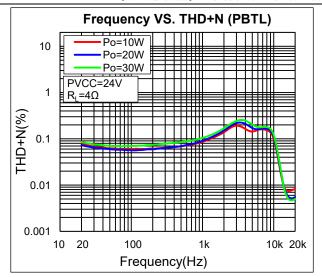












功能介绍

1. 待机模式

 \overline{SD} 引脚是 ANT3118S 使能控制管脚,在运放正常工作时应该是高电位, \overline{SD} 置低电位时 ANT3118S 进入 特机模式。不能让 \overline{SD} 悬空不连接,因为这样将使得运放出现不可预知状态。为了实现最佳的关断性能,在关断电源之前将运放置于待机模式。 \overline{SD} 引脚低电位电压应该小于 0.4V,高电位电压建议 $2.0V\sim5.5V$ 。

2. BTL 模式与 PBTL 模式

ANT3118S 支持 BTL 模式和 PBTL 模式输出,不需单独的控制管脚来选择 BTL 双声道输出模式和 PBTL 单声道输出,通过外围电路自动开启 BTL 或 PBTL 模式输出。BTL 与 PBTL 输出的电路具体电路见下文中"典型应用电路"。

3. 短路保护和自动恢复

ANT3118S 内置了输出短路保护电路,当输出端发生短路时,ANT3118S 立即关闭输出,当输出端短路故障排除后 ANT3118S 可自动恢复输出。

4. 过热保护

ANT3118S 的过热保护是防止芯片温升过高超过 160℃时造成芯片损坏的保护。ANT3118S 在过热保护温度点有±10℃的上下容许范围。一旦温度超过设定的温度点,芯片进入关闭状态,无输出,当温度下降 20℃后过热保护就会消除,芯片正常工作。

5. 过压保护

ANT3118S 内置了过压保护电路,当 PVCC 供电电压高于 26V 的过压保护点后,芯片进入关闭状态,无输出,过压保护解除后,芯片正常工作。

应用说明

1. 输入电容 Cin

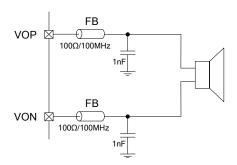
ANT3118S 的内部输入电阻 Rin 和外部输入电容 Cin 之间构成了一个高通滤波器,其截止频率计算公式如下:

$$f_c = \frac{1}{2\pi Rin Cin}$$

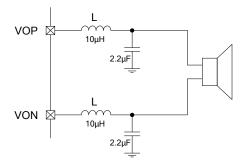
输入电容值的选择非常重要,一般认为它直接影响着电路的低频特性,但并不是电容值越大越好。电容之间良好的匹配对提升芯片的整体性能和 Pop&Click 的抑制都有帮助,因此要求选取精度为 10%或更高精度的电容。

2. 单端与差分输入方式

ANT3118S 的模拟输入是标准的差分输入接口。在系统设计中,推荐使用差分输入方式来接驳主芯片的音频输出。使用差分输入方式可以更好地的抑制 POP 声,同时增强信号的抗干扰能力。差分输入方式和单端输入方式的对比如下表:

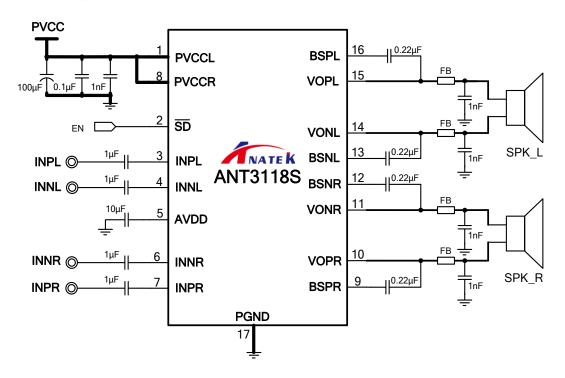

	差分输入方式	单端输入方式		
抗噪声干扰能力	差分输入有较强的共模噪声抑	无抑制功能,需要在 PCB 走线		
,	制能力	布局方面多加注意		
	美八於)的計稅州伊江了具份	单端输入需仔细设计输入网络		
开启/关闭时 POP 声性能	差分输入的对称性保证了最优 始开关机 BOD 声性能	及控制电路,避免输入不平衡		
	的开关机 POP 声性能	引起的 POP 声		

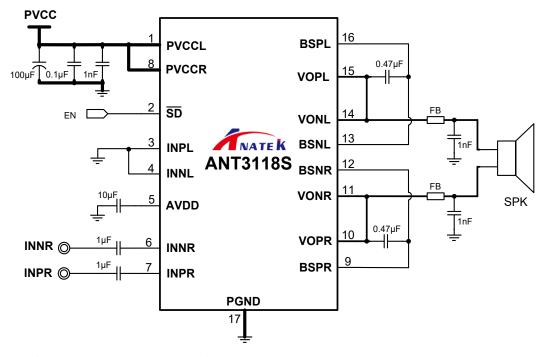
在实际应用中,由于多数主控芯片的音频模拟输出是单端模式,ANT3118S 的差分输入必须配置为单端接法才能使用。使用单端输入模式时需注意:单端输入模式应用时需要更加注意音频信号的走线和地线的分布,因为单端输入模式没有能力抑制系统中的共模干扰信号;单端输入模式必须注意 P/N 脚电路网络的阻抗匹配,尽量不要在输入级使用复杂的滤波网络。不合适的阻抗匹配网络可能会引起开关机的 POP 声。



3. 输出滤波器

ANT3118S 在 EMI 要求不高的应用时,可以在输出端直接连喇叭或在输出端脚磁珠滤波器,如下图示:


如果 ANT3118S 应用于 EMI 要求比较高的系统中,可以在输出端串接 LC 滤波器的方式,如下图示:



典型应用电路

2.0 (Stereo BTL) System

Mono (PBTL) Systems

注意: 1. 芯片底部是 PGND 管脚, 一定要接地。

2. SD 脚高电平时芯片工作,该管脚高电平电压范围是 2.0V - 5.5V。

封装尺寸图

ESOP16 封装尺寸图

SYMBOL	N	MILLIMETER	3	SYMBOL		MILLIMETER	₹	
	MIN	NOM	MAX	STIVIBOL	MIN	NOM	MAX	
Α	_	_	1.75	E1	3.70	3.90	4.10	
A1	0.05	0.1	0.15	е	1.27BSC			
A2	1.30	1.40	1.50	E2	_	_		
A3	0.60	0.65	0.70	D1	_	4.57	_	
b	0.39	_	0.48	g	_	0.508	_	
b1	0.38	0.41	0.43	j	_	0.40	_	
С	0.21	_	0.26	h	0.25	_	0.50	
c1	0.19	0.20	0.21	L	0.50	_	0.80	
D	9.70	9.90	10.10	L1	1.05BSC			
Е	5.80	6.00	6.20	θ	0	_	8°	